ELECTRONICA DIGITAL
  Tipos de memorias RAM, ROM, DRAM, SRAM.
 

 

Memoria de acceso aleatorio RAM
La memoria de acceso aleatorio, (en inglés: Random Access Memory cuyo acrónimo es RAM) es la memoria desde donde el procesador recibe las instrucciones y guarda los resultados. Es el área de trabajo para la mayor parte del software de un computador.[1] Existe una memoria intermedia entre el procesador y la RAM, llamada caché, pero ésta sólo es una copia de acceso rápido de la memoria principal almacenada en los módulos de RAM.[1] Los módulos de RAM son la presentación comercial de este tipo de memoria, se compone de integrados soldados sobre un circuito impreso.
Se trata de una memoria de estado sólido tipo DRAM en la que se puede tanto leer como escribir información. Se utiliza como memoria de trabajo para el sistema operativo, los programas y la mayoría del software. Es allí donde se cargan todas las instrucciones que ejecutan el procesador y otras unidades de cómputo. Se dicen "de acceso aleatorio" o "de acceso directo" porque se puede leer o escribir en una posición de memoria con un tiempo de espera igual para cualquier posición, no siendo necesario seguir un orden para acceder a la información de la manera más rápida posible.
La frase memoria RAM se utiliza frecuentemente para referirse a los módulos de memoria que se usan en los computadores personales y servidores.
 
 
 
En el sentido estricto, estos dispositivos contienen un tipo entre varios de memoria de acceso aleatorio , ya que las ROM, memorias Flash , caché (SRAM) , los registros en procesadores y otras unidades de procesamiento también poseen la cualidad de presentar retardos de acceso iguales para cualquier posición.
 
Los módulos de memoria RAM son tarjetas de circuito impreso que tienen soldados integrados de memoria DRAM por una o ambas caras. La implementación DRAM se basa en una topología de Circuito eléctrico que permite alcanzar densidades altas de memoria por cantidad de transistores, logrando integrados de cientos o miles de Kilobits. Además de DRAM, los módulos poseen un integrado que permiten la identificación de los mismos ante el computador por medio del protocolo de comunicación SPD. La conexión con los demás componentes se realiza por medio de un área de pines en uno de los filos del circuito impreso, que permiten que el modulo al ser instalado en un zócalo apropiado de la placa base, tenga buena conexión eléctrica con los controladores de memoria y las fuentes de alimentación. Los primeros módulos comerciales de memoria eran SIPP de formato propietario, es decir no había un estándar entre distintas marcas. La necesidad de hacer intercambiable los módulos y de utilizar integrados de distintos fabricantes condujo al establecimiento de estándares de la industria como los JEDEC.
  • Módulos DIMM Usado en computadores de escritorio. Se caracterizan por tener un bus de datos de 64 bits.
  • Módulos SO-DIMM Usado en computadores portátiles. Formato miniaturizado de DIMM.
  • Módulos SIMM Un formato usado en computadores antiguos. tenían un bus de datos de 16 o 32 bits
Memoria de sólo lectura  ROM
Memoria de sólo lectura (normalmente conocida por su acrónimo, Read Only Memory) es una clase de medio de almacenamiento utilizado en las computadoras y otros dispositivos electrónicos. Los datos almacenados en la ROM no se pueden modificar -al menos no de manera rápida o fácil- y se utiliza principalmente para contener el firmware (software que está estrechamente ligada a hardware específico, y es poco probable que requieren actualizaciones frecuentes).
En su sentido más estricto, se refiere sólo a ROM máscara ROM -en inglés MROM- (el más antiguo tipo de estado sólido ROM), que se fabrica con los datos almacenados en forma permanente, y por lo tanto, nunca puede ser modificada. Sin embargo, las más modernas, como EPROM y Flash EEPROM se puede borrar y volver a programar varias veces, aún siendo descritos como "memoria de sólo lectura (ROM), porque el proceso de reprogramación en general es poco frecuente, relativamente lento y, a menudo, no se permite la escritura en lugares aleatorios de la memoria.
 
Las computadoras domésticas a comienzos de los 80 venían con todo su sistema operativo en ROM. No había otra alternativa razonable ya que las unidades de disco eran generalmente opcionales. La actualización a una nueva versión significa usar un soldador o un grupo de interruptores DIP y reemplazar el viejo chip de ROM por uno nuevo. En el año 2000 los sistemas operativos en general ya no van en ROM. Todavía las computadoras pueden dejar algunos de sus programas en memoria ROM, pero incluso en este caso, es más frecuente que vaya en memoria flash. Los teléfonos móviles y los asistentes personales digitales (PDA) suelen tener programas en memoria ROM (o por lo menos en memoria flash).
Algunas de las consolas de videojuegos que usan programas basados en la memoria ROM son la Súper Nintendo, la Nintendo 64, la Sega Mega Drive o la Game Boy. Estas memorias ROM, pegadas a cajas de plástico aptas para ser utilizadas e introducidas repetidas veces, son conocidas como cartuchos. Por extensión la palabra ROM puede referirse también a un archivo de datos que contenga una imagen del programa que se distribuye normalmente en memoria ROM, como una copia de un cartucho de videojuego.
Una razón de que todavía se utilice la memoria ROM para almacenar datos es la velocidad ya que los discos son más lentos. Aún más importante, no se puede leer un programa que es necesario para ejecutar un disco desde el propio disco. Por lo tanto, la BIOS, o el sistema de arranque oportuno de la computadora normalmente se encuentran en una memoria ROM.
La memoria RAM normalmente es más rápida para lectura que la mayoría de las memorias ROM, por lo tanto el contenido ROM se suele traspasar normalmente a la memoria RAM cuando se utiliza.
DRAM
DRAM (Dynamic Random Access Memory) es un tipo de memoria electrónica de acceso aleatorio, que se usa principalmente en los módulos de memoria RAM y en otros dispositivos, como memoria principal del sistema. Se denomina dinámica, ya que para mantener almacenado un dato, se requiere revisar el mismo y recargarlo, cada cierto periodo de tiempo, en un ciclo de refresco. Su principal ventaja es la posibilidad de construir memorias con una gran densidad de posiciones y que todavía funcionen a una velocidad alta: en la actualidad se fabrican integrados con millones de posiciones y velocidades de acceso medidos en millones de bit por segundo. Es una memoria volátil, es decir cuando no hay alimentación eléctrica, la memoria no guarda la información. Inventada a finales de los sesentas, es una de las memorias mas usadas en la actualidad.
 
 
 
 
Funcionamiento
 
 
 
 
 
 
 
 
 
 
 
La celda de memoria es la unidad básica de cualquier memoria, capaz de almacenar un Bit en los sistemas digitales. La construcción de la celda define el funcionamiento de la misma, en el caso de la DRAM moderna, consiste en un transistor de efecto de campo y un condensador. El principio de funcionamiento básico, es sencillo: una carga se almacena en el condensador significando un 1 y sin carga un 0. El transistor funciona como un interruptor que conecta y desconecta al condensador. Este mecanismo puede implementarse con dispositivos discretos y de hecho muchas memorias anteriores a la época de los semiconductores, se basaban en arreglos de celdas transistor-condensador.
Las celdas en cualquier sistema de memoria, se organizan en la forma de matrices de dos dimensiones, a las cuales se accede por medio de las filas y las columnas. En la DRAM estas estructuras contienen millones de celdas y se fabrican sobre la superficie de la pastilla de silicio formando áreas que son visibles a simple vista. En el ejemplo tenemos un arreglo de 4x4 celdas, en el cual las líneas horizontales conectadas a las compuertas de los transistores son las llamadas filas y las líneas verticales conectadas a los canales de los FET son las columnas.
Para acceder a una posición de memoria se necesita una dirección de 4 bits, pero en las DRAM las direcciones están multiplexadas en tiempo, es decir se envían por mitades. Las entradas marcadas como a0 y a1 son el bus de direcciones y por el mismo entra la dirección de la fila y después la de la columna. Las direcciones se diferencian por medio de señales de sincronización llamadas RAS (del ingles Row Address Strobe) y CAS (Column Address Strobe) que indican la entrada de cada parte de la dirección.
 
SRAM
Static Random Access Memory (SRAM), o Memoria Estática de Acceso Aleatorio es un tipo de memoria basada en semiconductores que, al contrario que la memoria DRAM, es capaz de almacenar los datos mientras esté alimentada, haciendo innecesario refrescar los datos que almacenan sus celdas. Sin embargo, son volátiles en el sentido de que los datos que almacena se pierden una vez se interrumpe la alimentación eléctrica.
No debe ser confundida con la SDRAM (Syncronous DRAM).
Modos de operación de una SRAM
Una memoria SRAM tiene tres estados distintos de operación: standby, en el cual el circuito está en reposo, reading o lectura, durante el cual los datos son leídos desde la memoria, y writing o escritura, durante el cual se actualizan los datos almacenados en la memoria.
Reposo
Si bus de control (WL) no está activado, los transistores de acceso M5 y M6 desconectan la celda de los buses de datos. Los dos biestables formados por M1 – M4 mantendrán los datos almacenados mientras dure la alimentación eléctrica.
Lectura
Asumimos que el contenido de la memoria es 1, y está almacenado en Q. El ciclo de lectura comienza cargando los buses de datos con el 1 lógico, y luego activa WL y los transistores de control. A continuación, los valores almacenados en Q y Q se transfieren a los buses de datos, dejando BL en su valor previo, y ajustando BL a través de M1 y M5 al 0 lógico. En el caso del dato contenido en la memoria fuera 0, se produce el efecto contrario: BL será ajustado a 1 y BL a 0.
Escritura
El ciclo de escritura se inicia aplicando el valor a escribir en el bus de datos. Si queremos escribir un 0, ajustaremos BL to 1 y BL a 0, mientras que para un 1, basta con invertir los valores de los buses. Una vez hecho esto, se activa el bus WL, y el dato queda almacenado.
Aplicaciones y Usos
Características
La memoria SRAM es más cara, pero más rápida y con un menor consumo (especialmente en reposo) que la memoria DRAM. Es utilizada, por tanto, cuando es necesario disponer de un mejor tiempo de acceso, o un consumo reducido, o ambos.
Debido a su compleja estructura interna, es menos densa que DRAM, y por lo tanto no es utilizada cuando es necesaria una alta capacidad de datos, como por ejemplo en la memoria principal de los ordenadores personales.
Frecuencia de reloj y potencia
El consumo eléctrico de una SRAM varía dependiendo de la frecuencia con la cual se accede a la misma: puede llegar a tener un consumo similar a DRAM cuando es usada en alta frecuencia, y algunos circuitos integrados pueden consumir varios vatios durante su funcionamiento. Por otra parte, las SRAM utilizadas con una frecuencia baja, tienen un consumo muy bajo, del orden de micro-vatios.
Usos de las SDRAM
  • como producto de propósito general:
    • con interfaces asíncronas como chips 32Kx8 de 28 pines (nombrados XXC256), y productos similares que ofrecen transferencias de hasta 16Mbit por chip.
    • con interfaces síncronas, principalmente como caches y otras aplicaciones que requieran transferencias rápidas, de hasta 18Mbit por chip.
  • integrados en chip:
    • como memoria RAM o de cache en micro-controladores.
    • como cache primaria en microcontroladores, como por ejemplo la familia x86.
    • para almacenar los registros de microprocesadores.
    • en circuitos integrados.
    • en FPGAs y CPLDs.
Tipos de SRAM
SRAM no volátiles
Las SRAM no volatines presentan un funcionamiento estándar SRAM, con la salvedad de que guardan los datos cuando se interrumpe la alimentación eléctrica, salvaguardando información crítica. Se utilizan en situaciones donde la conservación de los datos es crucial y el uso de baterías no es posible.
SRAM asíncrona
Las SRAM asíncronas están disponibles en tamaños desde 4Kb hasta 32Mb. Con un tiempo rápido de acceso, son adecuadas para el uso en equipos de comunicaciones, como switches, routers, teléfonos IP, tarjetas DSLAM, y en electrónica de automoción.
 
Por tipo de transistor
Por función
  • Asíncronas — independientes de la frecuencia de reloj.
  • Síncronas — todas las operaciones son controladas por el reloj del sistema.

HECHO POR: MARIN GONZALEZ JESUS MANUEL
 
  Hoy habia 88 visitantes (613 clics a subpáginas) ¡Aqui en esta página!  
 
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis